What Sensing Tells Us:
Towards A Formal Theory of Testing for Dynamical Systems

Sheila A. Mcllraith
Knowledge Systems Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9020
sam(@ksl.stanford.edu

Abstract

Just as actions can have indirect effects on the state of the
world, so too can sensing actions have indirect effects on
an agent’s state of knowledge. In this paper, we investigate
“what sensing actions tell us”, i.e., what an agent comes to
know indirectly from the outcome of a sensing action, given
knowledge of its actions and state constraints that hold in the
world. To this end, we propose a formalization of the no-
tion of testing within a dialect of the situation calculus that
includes knowledge and sensing actions. Realizing this for-
malization requires addressing the ramification problem for
sensing actions. We formalize simple tests as sensing ac-
tions. Complex tests are expressed in the logic programming
language Golog. We examine what it means to perform a
test, and how the outcome of a test affects an agent’s state of
knowledge. Finally, we propose automated reasoning tech-
niques for test generation and complex-test verification, un-
der certain restrictions. The work presented in this paper is
relevant to a number of application domains including diag-
nostic problem solving, natural language understanding, plan
recognition, and active vision.

Introduction

Agents equipped with perceptual capabilities must operate
in a world that is only partially observable. To determine
properties of the world that are not directly observable, an
agent must use its knowledge of the relationship between
objects in the world, and its limited perceptual capabili-
ties to infer such unobservable properties. For example, if
an agent performs a sense action and observes that there is
steam coming out of an electric kettle, then the direct effect
of that sensing action is that the agent knows there is steam
coming out of the kettle. With appropriate knowledge of the
functioning of kettles, the agent should also know that the
electrical outlet has power, that the kettle is functioning, and
that there is hot liquid inside the kettle — all as indirect ef-
fects of the sensing action. Similarly, if the agent wishes to
know whether there is power at an electrical outlet, but can-
not directly sense this property of the world, the agent may
potentially acquire this knowledge by attempting to boil wa-
ter in a kettle plugged into this outlet.

Copyright (©) 2000, American Association for Atificial Intelli-
gence (www.aaai.org). All rights reserved.

Richard Scherl
Department of Computer Science
New Jersey Iustitute of Technology
University Heights
Newark, NJ 07102-1982
scherl@cis.njit.edu

Such a sequence of actions constitutes a test. If steam is
observed, then the agent knows that there is power at the out-
let; however if steam is not observed, the agent may or may
not know that there is no power at the electrical outlet. The
knowledge the agent acquires from the test will depend on
whether the agent knows that the kettle is functioning. Thus,
this particular test is only guaranteed to provide knowledge
about the existence of power at the electrical outlet under
one test outcome.

While researchers have extended theories of action to
include the notion of sensing or knowledge-producing ac-
tions (e.g., (Scherl & Levesque 1993; Baral & Tran 1998;
Golden & Weld 1996; Funge 1998)) and have charac-
terized the effect of sensing actions on an agent’s state
of knowledge, and even how to plan (e.g., (Stone 1998;
Golden & Weld 1996)) and to project (e.g., (De Giacomo
& Levesque 1999b)) in certain cases, with sensing actions,
they have not addressed the problem of how to reason in
a partially observable environment'. More generally, they
have not examined the problem of how sensing actions
can be coupled with knowledge of the relationship between
objects in the world to gain further knowledge, and how
both sensing actions, and world-altering actions change an
agents state of knowledge in the presence of such world
knowledge. Further, they have not examined the problem
of how to select sensing actions to acquire knowledge of
some property of the world that is not directly observable.
Perhaps the closest research is that of (Shanahan 1996b;
1996a) who investigates the assimilation of sensing results
for a mobile robot in a framework based on the event cal-
culus, (Mclliraith 1997) who assimilates observations into
situation calculus device models to perform dynamical di-
agnosis, or (Baral, Mcllraith, & Tran 2000) who do likewise
in the language (.

In this paper, we examine these issues in a dialect of the
situation calculus that has been extended with knowledge-
producing actions® (Scherl & Levesque 1993), but which
does not include state constraints. Following (Mcllraith
2000), we add state constraints to this language in order to

1 partially-Observable Markov Decision Processes (POMDPs)
address this class of problems within a different formalism, but
they do not address the testing issues we examine here.

2Henceforth referred to simply as sensing actions.

model the relationship between objects in the world, adopt-
ing the associated solution to the ramification problem for
world-altering actions. We show that this solution extends
to solve the ramification problem in the presence of sens-
ing actions. Next, we define the notion of a test — how to
design them and what knowledge can be drawn from their
outcomes. In the formalization, simple tests comprise a set
of initial conditions and a primitive sensing action. Complex
tests are expressed as complex actions in the logic program-
ming language Golog. We examine what it means to per-
form a test, and how the outcome of a test affects an agent’s
state of knowledge. Additionally, we examine the issue of
selecting tests to confirm, refute, or discriminate a space of
hypotheses.

Finally, we investigate the automation of reasoning about
tests. We show that regression may be used to verify ob-
jective achievement for complex tests written in a subset of
Golog. Further restrictions on the form of the complex tests
allows the same regression operators to serve as the basis
for a simple regression-style planner that generates tests to
increase an agent’s knowledge with respect to a space of hy-
potheses.

Situation Calculus

The situation calculus language we use, following (Reiter
2000), is a first-order language for representing dynamically
changing worlds in which all of the changes are the direct
result of named actions performed by some agent, or the in-
direct result of state constraints. Situations are sequences
of actions, evolving from an initial distinguished situstion,
designated by the constant Sy. If a is an action and s a sit-
uation, the result of performing a in s is the situation rep-
resented by the function do(a,). Functions and relations
whose truth values vary from situation to situation, called
Sluents, are denoted by a predicate symbol taking a situation
term as the last argument. Note that for the purposes of this
paper, we assume that our theoty contains no functional flu-
ents. Finally, Poss(a. s) is a distinguished fluent expressing
that action a is possible to perform in situation s. A situation
calculus theory D comprises the following sets of axioms:

« foundational axioms of the situation calculus, X,

® successor state axioms, Dy,

e action precondition axioms, D, ,

o axioms describing the initial situation, Dg),

 unique names for actions, D,,,,,,

o domain closure axioms for actions, D 0.

Successor state axioms, originally proposed by (Reiter
1991) to address the frame problem and extended by (e.g.,
(Lin & Reiter 1994; Mcllraith 2000)) to address the ramifi-
cation problem, are created by making a causal interpreta-
tion of the ramification constraints and a causal complete-
ness assumption and compiling effect axioms of the form®:

Poss{a,s) Ay} (F,a,8) D F(T,dola, 3)))
Poss(a,s) Ayr(F,a,8) D ~F(F,do(a, 3)), ?)

3Notational convention: all formulae are universally quantified
with maximum scope unless otherwise noted.

and ramification (state) constraints of the form:

vF(Z,8) D F(T,s) 3
”;(fx 3) 2 —‘F(fy ‘q)a (4)

into Intermediate Successor State Axioms of the form:

Poss(a, s) D [Fi(#F, dola,s)) = $F,] where, ®)

B3, =2, (F,,9) V 0 dolay 5))
V (F(F,s)
A —'(Afl—-',- (#,a,8)V "‘I:; (&, dola, 5)))), 6)

I.e., if an action is possible is situation s, then it implies that
the fluent is true in do(a, s) iff an action made it true -or-
a state constraint made it true -or- it was already true and
neither an action nor a state constraint made it false.

Such intermediate successor state axioms provide a com-
pact representation of a solution to the ramification problem
for a common class of state constraints. (Mcllraith 2000)
shows that for what are essentially acyclic causal ramifi-
cation constraints, repeated regression rewriting (e.g., (Re-
iter 1991)) of 7., R*[®}.] = ®r,, repeatedly rewrites the.
ramification constraints that are relativized to do{a, s) in (6)
above, and i3 guaranteed to terminate in a formula whose
fluents are relativized to situation s rather than do(a, s).
Both the intermediate and the less compact (final) succes-
sor state axioms which result from the regression provide
closed-form solutions to the frame and ramification problem
for the designated class of state constraints.

To illustrate sensing and testing in partially observ-
able environments, we present a partial axiomatization of
a car repair domain, derived from 7The Complete Idiot's
Guide to Trouble-Free Car Care (Ramsey 1999). Our do-
main includes world-altering actions such as turn_on(z) and
turn.of f(x), where x i8 radio or lights., These have the
effect that the radio or lights are on/off in the resulting situ-
ation, Actions turn(key) and releasc(key) have the effect
that the ignition is begin turned (turning_ign), or not, in
the resulting situation. These actions are defined in terms
of effect axioms and are combined with the following self-
explanatory state constraints to produce successor state ax-
ioms. For notational convenience we abbreviate: transmis-
sion - trans, interlock - intrik, solenoid - solnd, engine -
engn, battery - batt; ignition system - ign_sys, start system -
stri_sys.

cmply(gas-lank.3) D —alariable(s) (]

abginirlk. 8) D —slarlable(s) @)

ablball. 3) D —slartable(a) ()]

ab{solnd, 3} D —slartable(s) (10)

ab(starier. 8) D —slarlable(s) 1)

awdotirana) A ningeartirans. 2) D ablinirlk. 3) 12)

manwal{lrans) A -depressedichudch, 8) D ablintrik, 3) 13)
lurningigni(s) A ablball, 8) D —noise(engn. 2) (14)

lurning_ign(a} A emplylgaatank, 8) D —noisc(engn. x) 15)

Turning_ign{a) A —ab(aoind.3) D noise(sobnd, » (16)

abiball, 3) A onfradie, 3) D —noise{radio, ») a7
ab(radio, 8} D —noise{radio, 8) 18)
—ablball. 8) A onilights. 3) D emila(light, 3) 19

Space precludes listing all the successor state axioms. There
is one (intermediate) successor state axiom for each fluent.
E.g., axioms (7){(11) compile into intermediate successor
state axiom (20):
Poss(a, s) D [startable(dola, 3)) =

—empty{gas_tank, do(a, s)) A ~ab(intrlk, do(a, s))

A —ablbatt, dola, 3)) A ~ab(solnd, do(a, 3))

A —ab(starter, dofa, s))} 20)

As described in (Mcliraith 2000), the axioms describing
the initial situation, Sy contain what is known of the initial
situation as well as the ramification constraints of the form
of (3) and (4), relativized to Sg.

Knowledge and the Ramification Problem

In (Scherl & Levesque 1993), the situation calculus lan-
guage without state constraints was extended to incor-
porate both knowledge and sensing actions. World-
altering actions change the state of the world, sensing ac-
tions bave no effect on the state of the world but rather
change the agent’s state of knowledge. In our exam-
ple, sensing actions include check_fuel, checkscar start,
check _radio_noisc etc., which bave the effect of the agent
knowing empty(gastank,dola, 3)), startable(do(a, s)), and
noise(radio, do(a, 4)).

The notation Knows(o,s) (read as ¢ is known in
situation 3), where ¢ arbitrary formula, is an abbre-
viation for a formula that uses K. For example
KIIOWS(OH(I)IO("L],IJIO(‘L), 9) abbreviates:

K(s',8) D onlblock,,blocks,s").
The notation Kwhether(e, 3) is an abbreviation for a for-
mula indicating that the truth value of ¢ is known.

Kwhether(s, 5) = Knows(o, s) V Knows(¢, 3),

Following the notation of (Levesque 1996), each sense ac-
tion a has a sensed fluent, SF(a, s) associated with it, and
for each such a, D entails a sensed fluent axiom:

SF(a,s) = (), @n
which says that performing the sense action a tells the agent
whether the formula 1(s) is true or false. Thus, D |
Kwhether(¢, do(s, 5)) where a is an action with a sensed
fluent equivalent to .

For the sense action check_fucl the sensed fluent axiom
is:

SF(check_fuel, 3) = empty(gas_tank, s) (22)
which tells us whether or not the gas tank is empty. For
world-altering actions, D entails SF(a, s) = True.

In (Scherl & Levesque 1993), a successor state axiom for
the /i fluent is developed. Its form is as follows:
Successor State Axiom for I
Poss(a,s) D [K(s",dola,s)) =
3s'. Poss{a,s') A K(5',38) A (8" = dola,) A
[SF(a,s') = §F(a,3)] 23)

which says that after doing action « in situation s, the agent
thinks it could be in a situation 5" iff s = do(a. <) and 5’
is a situation that was accessible from s, and where 5 and <
agreed on the truth value of SF(a, 3), e.g., the truth value
of empty(gastank). Thus, for all situations do(a, s), the I’
relation will be completely determined by the I\” relationat s
and the action a. This extends Reiter’s solution to the frame
problem (without ramifications and without knowledge) to
the case of the situation calculus with sensing actions.

Proposition 1 [n the situation calculus theory described
above, the agent knows the successor state axioms and the
ramification constraints.

This follows from the fact that the successor state axioms
are universally quantified over all situations, and the rami-
fication constraints explicitly hold in Sy and are entailed in
all successor situations, by the successor state axioms.

Theorem 1 (Correctness of Solution) The proposed solu-
tion to the frame and ramification problems for world-
altering and sensing actions ensures that knowledge only
changes as appropriate, as defined by Theorems 1, 2,
3 (Scherl & Levesque 1993). Furthermore, the agent knows
the indirect effects of its sensing actions.

Thus, the successor state axioms for world-altering and sens-
ing actions, together address the frame and ramification
problems.

Testing

The purpose of a test is to attempt to determine the truth
value of certain properties of the world, that may or may
not be directly observable. A test is often performed with
respect to a set of hypotheses, with the objective of elimi-
nating as many hypotheses as possible from the set of hy-
potheses being entertained. Testing has been studied ex-
tensively for the specific problem of IC circuit testing, but
there is little work on testing for rich dynamical systems
such as the ones we examine here. The notion of a static
test was briefly discussed in (Moore 1985, litmus example),
and further developed for static systems in (Mcllraith 1994;
Mcllraith & Reiter 1992). We build directly upon the work
in (Mcllraith 1994) with the objective of developing a for-
mal theory of testing for dynamical systems.

Informally, a simple test comprises a set of initial con-
ditions that may be established by the agent, together with
the specification of a primitive sensing action, which deter-
mines what the agent will directly come to know as the result
of the test. In our car repair domain, we can test the battery
by checking the radio for noise. The initial conditions for
such a test might be on(radio, s). Then we can perform the
sensing action cleck radio_noise to see whether the radio is
emitting noise. Note that the precondition for performing
the action check_radionoise, Poss(check radio_noise, s) =
inside{car, s), is different from the initial conditions of the
test. Both must hold and must be consistent with the theory
and with the current hypotheses being entertained, in order
to execute the test.

We distinguish between two types of tests, truth tests
which tell us whether the properties being sensed are true in

the physical world, and fiuncrional tests, which tell us what
values of the properties are true in the physical world. For
the purposes of this paper, we restrict our attention to truth
tests, and our sensing actions to so-called binary sense ac-
tions which establish the truth or falsity of a sensed formula.

Definition 1 (Simple Test)

A simple test is a pair, (I, a), where I, the initial conditions,
is a conjunction of literals, and « is a binary sense action
whose sensed formula contains no free variables.

(on(radio, 8), check radio_noisc) is an example of a simple
test, following the discussion above. We now define the no-
tion of a test for a particular hypothesis space, represented
by the set H1 . We restrict the hypotheses, H(s) € HY PP
to be conjunctions of fluents whose non-situation terms are
constants, and whose situation term is a situation variable s,
In our car repair domain, an example hypothesis space might
be {ab(batt, s), ab(solnd, 3), enpty(gastank, s)}.

Definition 2 (Test for Hypothesis Space HY P)

A test (I, a) is a test for hypothesis space HY P in situation
sif DAIAPoss(a,sYAH(s) is satisfiable for every H(s) €
HYP.

That is, the state the world must be in to execute
the sensing action must be satisfiable, under the as-
sumption that any one of the hypotheses in the hypoth-
esis space could be true. Consider that D entails the
safety constraint ~crplosion(s) and the axiom sparks(s) A
gasdeak(s) D erplosion(s), and that our hypothesis space
is {gasdeak(s),ab(spark plug,s)}. A reasonable test for
ab(spark._plug, s) is to try to create sparks at the plug. Unfor-
tunately such a test would cause an explosion in the presence
of a gas leak. The satisfiability check above precludes such
a test.

Definition 3 (Confirmation, Refutation)

The outcome « of the test (I,a) confirms H(s) € HY P
iff D AIA Poss(a,s) A H(s) is satisfiable and D A I A
Poss(a,s) | Knows(H D a,s). arefates H(s) if D A
IAPoss(a,s)AH(s) is satisfiableand DAIA Poss(a,s) =
Knows(H O -a, s).

If the outcome of test (on(radio, s), check. radio_noise) is
noisc(radio, do(a, 3)), then our test refutes the hypothesis
ab(batt, s), following Axiom (17), and we can eliminate
al(batt, s) from our hypothesis space, H1 P.

Observe that a test outcome that refutes an hypothesis
H (s) allows us to eliminate it from HY P, Unfortunately, a
test outcome that confirms an hypothesis is generally of no
deterministic value, resulting in no reduction in the space of
hypotheses. As we will see in a section to follow, there are
exceptions that depend on the criteria by which the hypoth-
esis space is defined.

In the sections to follow we use these basic definitions
to define discriminating tests and relevant tests. These tests
are distinguished by the effect their outcome will have on a
general space of hypotheses.

Discriminating Tests

Notice that in our example above, if we had observed
—noisc(radio,do(a, 3)), then by the definition, this would

have confirmed the hypothesis ab(batt,), but it would have
been of little value in discriminating our hypothesis space.
All hypotheses remain in contention. Discriminating tests
are those tests (I,) that are guaranteed to discriminate an
hypothesis space HY P, i.e., which will refute at least one
hypothesis in £ P, regardless of the test outcome.

Definition 4 (Discriminating Tests)

A test (I, a) is a discriminating test for the hypothesis space
HY P if D A I A Poss(a,s) A H(s) is satisfiable for all
H(s) € HYP, and there exists H;(s), Hj(s) € HY P
such that the outcome « of test (I, a) refutes either H;(s)
or H;(s), no matter what that outcome might be.
Propesition 2

After we perform a discriminating test, (I.a),
Knows(~H;. s), for some H;(s) € HY P.

In general, we would like a discriminating test to refute
half of the hypotheses in the hypothesis space, regardless of
the test outcome. By definition, a discriminating test must
refute at least one hypothesis in the hypothesis space.

Definition 5 (Minimal Discriminating Tests)

A discriminating test (I, a) for the hypothesis space HY P
is minimal iff for no proper subconjunct I' of I is (I'.a) a
discriminating test for HY P.

Minimal discriminating tests preclude unnecessary initial
conditions for a test.

In some cases, we are interested in identifying a test that
will establish the truth or falsity of a particular hypothesis.
An individual discriminating test does precisely this.
Definition 6 (Individual Discriminating Tests)

A test (I, a) is an individual discriminating test for the hy-
potheses H;(s) and —~H;(s) € HY P iff DAIA Poss(a. s)A
H(s) is satisfiable for all H(s) € HY P and the outcome «
of test (1, a) refutes either H;(s) or —H(3), no matter what
that outcome might be.

Proposition 3

After we perform an individual discriminating test (I.a),
Kwhether(H,, 5) for some H; € HY P.

The test ({},check_fuel) i3 such a test. The out-
come will be one of -empty(gastank,dola,s)) or
empty(gestank,do(a,s)). Thus, as the result of per-
forming check_fuel in the physical world, the agent
Kwhether(cmpty(gas_tank, s)).

We can similarly define the notion of a minimal individual
discriminating test, and a minimal relevant test, below.

Relevant Tests

In the majority of cases we will not be so fortunate as to
have discriminating tests. Relevant tests are those tests
(I,a) that have the potential to discriminate an hypoth-
esis space HY P, but which cannot be guaranteed to do
so. Given a particular outcome ¢, a relevant test may re-
fute a subset of the hypotheses in the hypothesis space
HY P, but may not refute any hypotheses if —a is ob-
served. Since we can’t guarantee the outcome of a test,
these tests are not guaranteed to discriminate an hypothe-
sis space. (on(radio, s), checkradio_noise)is an example of
such a test.

Definition 7 (Relevant Tests)

A test (I,a) is a relevant test for the hypothesis space
HY P if D AT A Possla,s) A H(s) is satisfiable for all
H(s)inHY P, and the outcome « of test (I, a) either con-
firms a subset of the hypotheses in HY P or refutes a subset.

By definition, a relevant test confirms or refutes at least
one hypothesis in HY P, and it follows that every discrimi-
nating test is a relevant test.

In addition to discriminating and relevant tests, there is
a third class of tests. Constraining tests do not refute an
hypothesis, regardless of the outcome, but they do provide
further knowledge that is relevant to the hypothesis space
and which the agent can exploit in combination with other
tests. We discuss this notion in a longer paper.

Testing Hypotheses

In the previous section we observed that a test outcome that
refutes an hypothesis H(s) € HY P allows us to climinate
it from HY P, but that in general an outcome that confirms
H (9) has no value in reducing the hypothesis space. In this
section, following (McIlranh 1994), we show that when the
hypothesis space is determined using a consistency-based
criterion this is indeed true, but when the hypothesis space is
defined abductively, confirming test outcomes serve to elim-
inate those hypotheses that are not confirmed, i.e., that do
not explain, the test outcome.

Definition 8 (Consistency-Based Hypothesis Space)

A consistency-based hypothesis for D and outcome o of
the test (I,a) is any H(s) € HY P such that D AT A
Poss(a, s) A H(3) A ais satisfiable.

Proposition 4 (Eliminating C-B Hypotheses)

The outcome o of a test (I, a) eliminates those consistency-
based hypotheses. H{s) € HY P that are refuted by test
oulcome (.

Definition 9 (Abductive Hypothesis Space)

An abductive hypothesis for D and outcome o of the test
(I.a) is any H(s) € HY P such that D A I A Poss(a,s) A
H(5) is satisfiable, and D A I A Poss{a,s) A H(s) F a.

Proposition 5 (Eliminating Abductive Hypotheses)

The outcome « of a test (I.q) eliminates those abductive
hypotheses, H(3) € HY P that are not confirmed by test
outcome .

Thus, in the case of abductive hypotheses, unlike
consistency-based hypotheses, both confirming and refuting
test outcomes have the potential to eliminate hypotheses.

Proposition 6 (Efficacy of Tests)

Any outcome & of a relevant test (I,a) can eliminate abduc-
tive hypotheses, whereas only a refuting outcome can elimi-
nate consistency-based hypotheses. Discriminatory test out-
comes, by definition, can eliminate either consistency-based
or abductive hypotheses, regardless of the outcome.

Complex Tests

In the previous section, we defined the notion of a simple
test (I, a), and characterized the circumstances under which

the outcome of such a test would discriminate an hypoth-
esis space. Indeed, to discriminate an hypothesis space, we
may need a sequence of simple tests, interleaved with world-
altering actions in order to achieve the initial conditions for
a test. Likewise, the selection and sequencing of sensing
and world-altering actions may be conditioned on the out-
come of previous sensing actions. In the section to follow,
we examine the problem of generating tests using regres-
sion. As we will see, generating tests, especially tests that
involve sequences of sensing and world-altering actions is
hard. In many instances, we need not resort to computation.
The domain axiomatizer can articulate procedures for testing
aspects of a system, just as the author of The Idiot's Guide
has done in the domain of car repair. The logic programming
language, Golog (alGOl in LOGic) (Levesque et al. 1997)
provides a compelling language for specifying such tests, as
we describe briefly here.

Only a sketch of Golog is given bere. See (Levesque et al.
1997) for a full discussion of the language and also a Prolog
interpreter. Golog provides a set of extralogical canstructs
(such as action sequencing, if-then-else, while loops) for as-
sembling primitive actions, defined in the situation calculus,
into macros that can be viewed as complex actions. The
macros are defined through the pnedlcate Do(o s, ") where
4 is a complex action expression. Do{d, s, 5") is intended to
mean that the agent’s doing action 4 in situation s leads to
a (not necessarily unique) situation s’. The inductive defini-
tion of Do includes the following cases:

Dola, s,5") — simple actions
Do(?, 3, 5") — tests (referred to as G-tests in this paper)
Do([81;85], 5, s} — sequences
Do([5:]62], s, s") — nondeterministic choice ofacnons
Do((I1x)é, 3, s') — nondeterministic choice of parameters
Do(if & then &, else 4., s, 5')- conditionals, where we
restrict o to a G-test
Do(while ¢ dod,s,s) — while loops
Space does not perm:t giving the full expansion for each
of the constructs, but they can be found in (Levesque et al.
1997). The only change here is that the definition of the G-
test construct (including the implicit G-test in the condition
construct) must expand into a G-test involving knowledge*.
The following is a partial example of a complex test writ-
ten in Golog, and derived from (Ramsey 1999). This par-
ticular procedure is designed to help discriminate the space
of hypotheses generated when a car won’t start, namely
{ab(intrlk, 3), empty(gas_tank, s), ab(batt, 3), ab(solnd, 3),
ab(ign_wires, s), ab(starter, s)}. In a diagnostic application
such as this one, Golog procedures may also be written to
combine testing with repair.

proc CARWONTS TART
if (- startable) them CHECKINTERLOCK;

*We are taking the simplest approach towards incorporating
sensing actions into Golog. All actions are on-line. In other words,
they are executed immediately without any possibility of back-
tracking. Other options for completely off-line execution (Lake-
meyer 1999) and a mixture of off-line and on-line execution (De
Giacomo & Levesque 1999a) have been discussed in the literature.

if (= AB(INTRLK)) them CHECK_GAS_TANK;

if (— EMPTY(GAS.TANK)) then CHECKBATTERY;
if (= AB(BATT)) them CHECKSOLENOID;

if (~ AB(SOLND)) then CHECKIGNWIRES;
if (- AB(IGN_WIRES)) then CHECKSTARTER;
if (— AB(STARTER)) then CHECKENGINE
end if end if end if end if end if end if end if
endProc

proc CHECKBATTERY
TURN_ON(RADIO); CHECK_RADIO_NOISE;
if (~ NOISE(RADIO))
then TURN.ON(LIGHTS); CHECK_LIGHTS
end if
endProc

Observe that complex tests often invoilve world-altering
actions which serve to establish the preconditions and initial
conditions for embedded simple tests. Also observe that in
achieving the preconditions or initial conditions for simple
tests, these actions change the state of the world, including
potentially changing the space of hypotheses. For exam-
ple, if a flashlight isn’t emitting light, and one hypothesis
is that the batteries are dead, a good way to test them is to
replace them with fresh batteries, and see whether the flash-
light then works. However, replacing the flashlight batteries
potentially changes the state of one of the hypotheses.

In diagnosis domains, such as the ones above, it is of-
ten desirable to combine fanlt detection (hypothesis testing)
with repair and to take actions to eradicate faults as easily as
to diagnose them (Mcllraith 1997; Baral, Mcliraith, & Tran
2000). However, in cases where it is desirable not to aiter
the truth status of the hypothesis space, care must be taken
to design and verify and/or generate tests that maintain des-
ignated knowledge constraints and world constraints. E.g.,
we don’t want to determine whether the gas tank is empty
by draining it!

Automated Reasoning About Tests

In the previous section we introduced the notion of a com-
plex test, demonstrating that such tests could sometimes be
specified in Golog. In this final technical section we briefly
examine the use of automated reasoning techniques, and in
particular the use of regression rewriting, for the purpose
of verifying certain properties of Golog-specified complex
tests, and for generating complex tests as conditional plans.
Our presentation draws upon (Lespérance 1994) and (Re-
iter 2000). Other related approaches to conditional plan-
ning include (Rosenschein 1981; Manna & Waldinger 1987;
Lobo 1998).

Consider the Golog complex test given above to help dis-
criminate the space of hypotheses generated when a car
won’t start. To verify that it is an individual discriminat-
ing test, it is necessary to ensure that for at least one of the
hypotheses H, Kwhether(H, s) holds, where s is the sit-
uation resulting from the execution of the Golog procedure,
ie. Do(CARWONTSTART, S, s). Thus, we would like to
be able to entail \/ ;. ;- p Kwhether(H, s), and in par-
ticular Kwhether(emply(gas_tank),), for example. A
verification that the procedure is a discriminating test would

mvolve ensuring that for at least one H, Knows(-H, s)

holds in the final situation, i.e., \ ;;c ;- p Knows(—H. s).
In (Scherl & Levesque 1993), a form of regression (based

on the discussion in (Reiter 1991)) is developed for the sit-

uation calculus with sensing actions. Through the appli-
cation of regression, reasoning about situations reduces to
reasoning in the initial situation, So. Given a ground sit-
uation term (i.e. a term built on S, with the function do
and ground action terms) s,,, the problem is to determine

whether the axiomatization of the domain D entails G(s,,)

where (& (the intended objective of the procedure) is an arbi-

trary sentence including knowledge operators. This question
is reduced to the question of whether or not the axiomatiza-

tion of the initial situation entails the regression of G/(s,,),

i.e,R(G(s4,)). Since the result of regression is a formula in

an ordinary modal logic of knowledge (i.e. a formula with-
out action terms and where the only situation term is Sp) an
ordinary modal theorem proving method may be used to de-
termine whether or not the regressed formula is entailed by
the axiomatization of the initial situation, Dg,. In our case

G will be a formula made up of subformulae of the form

Kwhether(H, s) or Knows{—H, s), where H is an hy-

pothesis.

The regression operator R is defined relative to a set of
successor state axioms D,,. The first four parts of the defi-
nition of the regression operator’, R concern world-altering
actions and are taken from (Reiter 2000).

i. When V17 is a non-fluent atom, including equality atoms, and
atorns with the predicate symbol Poss, or when 117 is a fluent
atom or Knows operator, whose situation argument is the situa-
tion constant Sy, R{W] = 1",

ii. When F is a relational fluent (other than R) atom whose suc-
cessor state axiom in Dy is

then Poss(a,8) O [F(x1,... ,2a,do(a, s)) = or]

RIE(tys - s ta,do(8, o)) = Srfy) 0 000

iii. Whenever 11" is a formula,
R[-W] = ~R[¥,
R[(Vo)W] = (Vo)R[W],
R[(Fe)W] = (Fe) R[]

iv. Whenever 11", and 11", are formulas,
RV AWL] = RIUH]A RV,
RW v L] = R[WA] v R[],
RWH D W] = R[W,] D R{WI].

Following (Scher] & Levesque 1993), additional steps are
needed to extend the regression operatorto sensing actions®.
Two definitions are needed for the specification to follow.
When ¢ is an arbitrary sentence and s a situation term, then
*[s] is the sentence that results from adding an extra argu-
ment to every fluent of ;» and inserting s into that argument

SSome details are omitted here (e.g, regression of functional
fluents, and the equality predicate). Also note that the formula to
be regressed must be regressable. This concept is fully defined in
(Reiter 2000).

“Regression of sensing actions that make known the denotation
of a term (e.g. an action of reading a number on a piece of paper)
is not discussed here.

position. The reverse operation ;o' is the result of remov-
ing the last argument position from all the fluents in .

Step v covers the case of regressing a world-altering ac-
tion through the Knows operator. Step vi covers the cases of
regressing a sensing action through the Knows operator. In
the definitions below, 5’ is a new situation variable.

v. Whenever . is not a sensing action,
R[Knaws(IT’,do(a, 1))] =
Knows((R[W¥ [do(a, ™', s).
vi Whenever a is a semsing action, where 17 is a formula
such that D entails that t[s] is equivalent to SF(a,s),
R[Knows(W', do(a, s))] =
((¥(3) O Kmows(1; D R[W[do(a,s")]]™',) A
(=v7i(s) > Knows(~v; D> R[W[do(a,)]}, 9))

An additional operator C needs to be defined to handle
the expansion of the complex actiops found in Golog, so
that we can apply regression’”. We are only considering a
subset of Golog programs — those composed of simple ac-
tions, sequencing, and conditionals. We also add the empty
action noOp or ﬁ (names for the same operation). Also note
that =, (#, s) stands for the preconditions of a() as speci-
fied in the action precondition axiom, D,,, Poss(a(#),s) =
7. (. 3).

vill. C(noOp, W s) =1"(s)
ix. C(fa(F);8), W, 3) = m.(F, 3) A C(6,W,do(a(F), s)) where

a() is a ground non-sensing simple action term.

x. C([if ¢ (¥) thend; else s}, W, 3) =

Kwhether(o(F), 3) A

[Knows(o(F), s) D C(6, W, 8)] A

[}(IIOWS(—'O(.‘E'), 3) > C(&z, w, 8)]
We are assuming that the agent is able® to execute the Golog
test procedure. In particular, the programmer (of the test
procedure) must have ensured that at the point where an
[if ¢ () thend, else d;] statement is encountered, the ex-
ecuting agent must Kwhether(o, 5). If not, the procedure
will fail.

In the following theorem (a generalization of Theorem 2
from (Lespérance 1994), recall R*(;>) indicates the repeated
regression of ;> until further applications leave the formula
unchanged.

Theorem 2 For any Golog procedure 4, consisting of sim-
ple actions, sequences, and conditionals, and G an arbitrary
closed regressable formula that may include knowledge op-
erators:

D k= 3s(Dold, So; 3) A G(s))iff

D.‘?o U Dnna F R (C((S, G, So))
Theorem 2 shows it may be verified that any Golog testing
routine (utilizing concatenation and conditionals) achieves
its intended objective G' through the use of regression fol-
lowed by theorem proving in the initial database. The suc-
cessor state axioms (D,,) are only used in the regression
procedure. This theorem can be extended to likewise verify
other properties of our Golog procedures.

"The C operator introduced here is based on (but generalizes)
the E operator of (Lespérance 1994).

*See (Lespérance et al. 2000) for a discussion of ability and
Golog programs. Related issues are discussed in (Lespérance 1994;
Lakemeyer 1999).

We can use the above regression operator as the basis
for a simple conditional planning algorithm for constructing
complex tests, Following (Lespérance 1994), we consider
only normal form conditional plans. These are conditional
plans in which the condition in a conditional (e.g. the ¢ in
[if & (F) then d; else J-]) must be a sensed formula. Thus
we can require that prior to any conditional with the G-test
o, there must be an action a such that a is a sensing action
and D | SF(a,s) = ¢(s). This guarantees that the pro-
gram executing the test will always Kwhether(¢,) when
a conditional is encountered. For any complex test (that is
executable) consisting only of concatenation and condition-
als, there must be an equivalent test in this normal form.

Fori =1,2,3..., we can define the sentences I'; as:

To®G(s)

rie

Ze(FF(a= LA T (F)V ...
V IF(a = A, (F) A 74, ()]
A ’R,(I",'_l(zlo(a,s)))) v
Fa([3F (a = AUD) A 7as (D) A (SF(a,8) = () A
R(&1(F, do(a,) D L. (dola, 5))) A
R(—o\(F, dola, s)) D Ti_r(do(a, 3)))]
AN
Fa([3Z(a = 1, (D) Aras (D)A(SF(a,$) = om(3))A
R (¥, do(a, 5)) DIy {dola,) A
R(-0,(F, dola, 8)) D Ti~i(dola,s)))]
Each I'; is true if there is a plan of length i starting in s
and leading to a state satisfying & (Reiter 1995; Lespérance
1994). The following theorem (essentially Theorem 3 of
(Lespérance 1994)) establishes the soundness and complete-
ness of the regression-based test planning method.
Theorem 3 For Golog procedure & in normal form and G,
an arbitrary closed regressable formula that may include
knowledge operators:
D = 3s(Do(d, So, 3) A G(3)) iff for some n
DsoUDwna ETo(So) V... VI, (50)

This regression-based finite horizon method of generating
and evaluating all normal form conditional plans of greater
and greater size is certainly not designed for efficiency, but
the results can serve as the foundation for building more
efficient regression-based complex-test planning methods,
much as similar results have served as the foundation for
relatively more efficient regression based planming methods
(McDermott 1991; Lespérance 1994; Rosenschein 1981). In
future work we will evaluate the extension of current state
of the art planning techniques based on SAT and Graphplan,
to address the planning problems raised in this paper (Weld
1999).

Summary

In this paper we presented results towards a formal theory
of testing for dynamical systems, specified in the language
of the situation calculus. Our first contribution was to ad-
dress the ramification problem for sensing actions. We then
defined the notion of a test, examining how a test can be
designed and how the outcome of different types of tests af-
fect an agent’s state of knowledge. The realization of many

tests in the world requires a complex sequencing of world-
altering and sensing actions, whose selection and ordering is
conditioned upon the outcome of previous sensing actions.
We proposed specifying such complex tests in the logic pro-
gramming language Golog. We then demonstrated that re-
gression could be used both to verify the desired objective
of such complex tests, and to generate tests as conditional
plans under certain restrictions.

Sensing is integral to the operation of most autonomous
agents. The notion of complex and simple tests introduced
here extends the body of theoretical work on sensing in dy-
namical systems, and has practical relevance for building
agents for diagnostic problem solving, plan understanding,
or simply for mobile cognitive agents that need to interact in
complex environments with limited sensing.

Acknowledgments

We thank Eyal Amir for useful comments on an ear-
lier version of this paper. Additionally, we thank Yves
Lespérance for useful discussions related to this paper. This
research was supported in part by NSF grant NSF 9819116,
DARPA grant N66001-97-C-8554-P00004 and by NASA
grant NAG2-1337.

References

Baral, C., and Tran, S. 1998. Formalizing sensing actions: a tran-
sition function based approach. In Proc. of AAAI 98 Fall Sympo-
sium on Cognitive Robotics.

Baral, C.; Mcllraith, S.; and Tran, S. 2000. Formulating diag-
nostic problem solving using an action language with narratives
and sensing. In Proc. Seventh International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR '2000).
To appear.

De Giacomo, G., and Levesque, H. J. 1999a. An incremental in-
terpreter for high-level programs with sensing. In Levesque, H.J.,
and Pirri, F, eds., Logical Foundations for Cognitive Agents:
Contributions in Honor of Ray Reiter. Berlin: Springer. 86-102.
De Giacomo, G., and Levesque, H. J. 1999b. Progression and
regression using sensors. In Proc. Sixteenth International Joint
Conference on Artificial Intelligence (LJCAI-99), 160-165.
Funge, J. 1998. Making Them Behave: Cognitive Models for
Computer Animation. Ph.D. Dissertation, Department of Com-
puter Science, University of Toronto.

Golden, K., and Weld, D. 1996. ing sensing actions:
The middle ground revisited. In Proc. Fifth Intnl. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR '96).
Lakemeyer, G. 1999. On sensing and off-line interpreting in
GOLOG. In Levesque, H. J., and Pirri, F., eds., Logical Founda-
tions for Cognitive Agents: Contributions in Honor of Ray Reiter.
Berlin: Springer. 173-189.

Lespérance, Y.; Levesque, H. J.; Lin, F.; and Scher, R. B. 2000.
Ability and knowing how in the situation calculus. Stwdia Logica.
To appear.

Lespérance, Y. 1994. An approach to the synthesis of plans with
perception acts and conditionals. In Working Notes of the Cana-
dian Workshop on Distributed Artificial Intelligence.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl, R.
1997. GOLOG: A logic programming language for dynamic do-
mains. The Journal of Logic Programming 31:59-84.

Levesque, H. 1996. What is planning in the presence of sensing?
In Proc. Thirteenth National Conference on Artificial Intelligence
(AAAI-96), 1139-1146.

Lin, F., and Reiter, R. 1994. State constraints revisited. Journal
of Logic and Computation 4(5):655-678. Special Issue on Action
and Processes.

Lobo, J. 1998. COPLAS: a COnditional PLAnner with Sens-
ing actions. In Working Notes of the AAAI98 Fall Symposium on
Cognitive Robotics, 109-116. .
Manna, Z., and Waldinger, R. 1987. How to clear a block: A
theory of plans. Journal of Automated Reasoning 3:343-377.
McDermott, D. 1991. Regression planning. International Journal
of Intelligent Systems 6:356-416.

Mcllraith, S., and Reiter, R. 1992. On tests for hypothetical
reasoning. In W. Hamscher, L. C., and de Kleer, J., eds., Readings
in model-based diagnosis. Morgan Kaufinann. 89-96.

Mcllraith, S. 1994. Generating tests using abduction. In
Proc. Fourth International Conference on Principles of Knowi-
edge Representation and Reasoning (KR’94), 449-460.
Mcllraith, S. 1997. Towards a Formal Account of Diagnostic
Problem Solving. Ph.D. Dissertation, Department of Computer
Science, University of Toronto, Toronto, Ontario, Canada.
Mcliraith, S. 2000. A closed-form solution to the ramification
problem (sometimes). Artificial Intelligence 116(1-2):87-121.
Moore, R. 1985. A formal theory of knowledge and action. In
Hobbs, J. B., and Moore, R. C., eds., Formal Theories of the Com-
monsense World. Ablex Publishing Corp. 319-358.

Ramsey, D. 1999. The Complete Idiot’s Guide to Trouble-Free
Car Care. Alpha Books.

Reiter, R 1991. The frame problem in the situation calculus: A
simple solution (sometimes) and a completeness result for goal
regression In Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of J. McCarthy.

Reiter, R. 1995. CS2532S course notes. Unpublished manuscript.
Reiter, R. 2000. Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. In prepara-
tion. Draft available at hitp://www.cs.toronto.edw/ cogroboy/.
Rosenschein, S. 1981. Plan synthesis: A logical perspective. In
Proc. Seventh International Joint Conference on Artificial Intelli-
gence (LICAI-81), 331-337.

Scherl, R., and Levesque, H. 1993. The frame problem and
knowledge producing actions. In Proc. Eleventh National Con-
ference on Artificial Intelligence (AAAI-93), 689-695.
Shanahan, M. 1996a. Noise and the common sense informatic
situation for a mobile robot. In Proc. Thirteenth National Confer-
ence on Artificial Intelligence (AAAI-96), 1098-1103.

Shanahan, M. 1996b. Robotics and the common sense informatic
situation. In Proc. European Conference on Artificial Intelligence
(ECAL-96), 684-688.

Stone, M. 1998. Abductive planning with sensing. In Proc.
Fifteenth National Conference on Anificial Intelligence (AAAI-
98), 631-636.

Weld, D. 1999. Recent advances in Al planning. Al Magazine.

